Organizes individual level data and aggregate estimates into a single xlsx
file to be uploaded on the SeroTracker
website.
Arguments
- data
A validated data.frame, output of
st_validate()- estimates
a data.frame, output of
st_aggregate()- path
where to save the xlsx file
Examples
mydata <- dplyr::mutate(
sample_raw_data,
age = ifelse(age %in% c(-999, 999), NA, age)
)
validated_df <- st_validate(
mydata,
dataset_id = dataset_id,
id = id,
age_group = age_group,
age = age,
sex = sex,
adm0 = regions$adm0$Canada,
adm1 = regions$adm1$Canada$Alberta,
adm2 = regions$adm2$Canada$Alberta$Calgary,
collection_start_date = "2020-Mar-01",
collection_end_date = "15/8/2023",
test_id = assays$`SARS-CoV-2`$`ID.Vet - IgG - ID Screen`,
result = result,
result_cat = result_cat,
include_others = TRUE,
rmd_safe = TRUE
)
#> ── Mapping columns and validating data ─────────────────────────────────────────
#> ✔ age_group is a valid column. [22ms]
#> ✔ age is a valid column. [24ms]
#> ✔ sex is a valid column. [12ms]
#> ✔ adm0 is a valid string. [8ms]
#> ✔ adm1 is a valid string. [9ms]
#> ✔ adm2 is a valid string. [12ms]
#> ✔ collection_start_date is a valid scalar. [11ms]
#> ✔ collection_end_date is a valid scalar. [18ms]
#> ✔ test_id is a valid string. [6ms]
#> ✔ result is a valid column. [9ms]
#> ✔ result_cat is a valid column. [9ms]
#> ✔ dataset_id is a valid column. [3ms]
#> ✔ id is a valid column. [11ms]
#> ── Validation finished ─────────────────────────────────────────────────────────
#> Success! Validated data created.
estimates <- st_aggregate(validated_df)
st_save(validated_df, estimates, path = tempdir())